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Abstract: The collection of heart rate variability (HRV) for health and performance observations have become prominent. 

However, each wearable device has proprietary algorithms that govern methods and timing of HRV capture and subsequent 

analysis. The purpose of this study was to evaluate HRV metrics taken from three, commonly used commercial wearables, and 

identify reliability and relationships to one another over time. Methods: Twenty-five subjects (18 males; 7 females) with ages 

ranging from 23 to 41 years (32.70 ± 4.65 years) were included in this study. These subjects were participants in a 12-week 

exercise intervention study. Each subject was equipped with a Whoop Strap (v2.0), the Garmin Fenix 5 Smartwatch and chest 

strap, and the Omegawave chest strap and sensor. Statistical Analysis: Between and within-subject correlations were calculated 

as well as average correlations, descriptive and inferential statistics, and the resultant z-score, which was transformed back into a 

correlation. Intraclass correlation coefficients (ICC) were calculated. Finally, linear mixed models were used to evaluate trends 

in HRV. Results: Within-subject correlations (0.24 ± 0.27) were lower than between-subjects correlations (0.54 ± 0.43), t (35) = 

-4.02, p < 0.001. Garmin HRV Stress, Whoop RMSSD, Omegawave SDNN, and Omegawave RMSSD yielded an ICC between 

0.65 and 0.75. Garmin All-day stress, Garmin prior all-day stress, and Omegawave LF/HF yielded an ICC of 0.30 and 0.37. To 

test the effects of day of the week on HRV, we fitted linear mixed models to HRV metrics from three of the identified 

communities related to ICC: Omegawave RMSSD (moderate to high ICC), Omegawave LF/HF (low to moderate ICC), and 

Whoop recovery score (very low ICC). There was a main effect of gender on Omegawave RMSSD (p = 0.020) and a negative 

effect of day of the week (p = 0.030). Day of the week was the only significant predictor of Whoop recovery score (p < 0.001). 

Conclusion: The correlations of HRV values remain more consistent when assessed at similar times of the day, rather than being 

device dependent. Regardless of which wearable device is considered, HRV measures should be collected at a specific time each 

day for the best reliability. When creating an individualized or group exercise program, the human performance specialist should 

be aware that fatigue may become increasingly evident during the course of each week (e.g. individuals demonstrably fatigued 

by Friday may exhibit physiological indicators of relative recovery by Monday). 
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1. Introduction 

Heart rate variability (HRV) is defined as the beat-to-beat 

variation in heart rate (HR) [1]. Research findings indicate 

that HRV can be used for physiological stress and recovery 

monitoring [2, 3]. Resting or post-exercise HRV can be used 

for the identification of various training adaptations, which 

can also be observed by monitoring autonomic nervous 

system (ANS) activity [3]. For instance, increases in fitness 

and exercise performance are thought to be associated with 

increases in vagal-related indices of HRV, while negative 

adaptations to training are generally associated with 

overtraining and subsequent reductions in vagal-related 

indices of HRV [4]. ANS cardiac dysregulation underlies the 

manifestation and perpetuation of symptoms of poor health. 

HRV commonly predicts morbidities from common mental 

(e.g., stress, depression, anxiety) and physical disorders (e.g., 

inflammation, chronic pain, insomnia, fatigue, etc) [5]. The 

evaluation of HRV allows coaches and practitioners to 

closely monitor and regulate the balance of training and 

recovery in an ongoing effort to improve fitness and 

performance [6] while maintaining general wellness. 

The spotlight on HRV monitoring in recent years has 

resulted in increased demand for non-invasive and efficient 

means to assess this physiological response. The commercial 

industry has responded with a range of fitness wearables 

capable of capturing and recording HRV variables. [7]. 

However, most of these wearables use “black-box” and 

proprietary HRV-based metrics, limiting data transparency 

(i.e., it is unclear if and how traditional HRV variables are 

combined or transformed to create proprietary metrics). 

Therefore, there is a need for more evidence supporting the 

reliability/validity of any of the many popular commercial 

devices, since such data is lacking. Furthermore, there are 

likely individual differences in HRV metrics that need to be 

considered when evaluating them for reliability and validity. 

Thus, it is prudent to examine HRV baseline values and 

adaptations in an individual, while comparing across a cohort 

of individuals to better capture relationships between HRV 

metrics and their associations with health and performance. 

Common & Derivative HRV Metrics 

Multiple complex variables can be evaluated when assessing 

HRV. Time between normal heartbeats—the time interval 

between R peaks of the QRS complex [8]—is known as NN. 

NN intervals derive from the “normal” R-R interval. In other 

words, these intervals represent normal cardiac timing and are 

intended to be free from artifact. In addition, the standard 

deviation of NN intervals (SDNN) are measured in milliseconds 

and represent the variability of the IBI segment. [8]. Both 

sympathetic and parasympathetic nervous systems play a role in 

SDNN, a metric that correlates closely with low frequency (LF) 

power. LF power is hypothesized to be indicative of an index of 

vagal-cardiac nerve traffic [8]. SDNN is the gold standard for 

HRV metric cardiac risk stratification when measured over a 

24-hour period [8]. While SDNN is highly correlated with LF 

power; the root mean square of successive RR interval 

differences (RMSSD) reflects the beat-to-beat variance (in 

milliseconds) over ~5 minutes and is highly correlated with high 

frequency (HF) power [8]. RMSSD is thought to be more 

heavily influenced by the parasympathetic nervous system (i.e. 

vagal traffic) (PNS) as compared to SDNN [8]. 

Low frequency power is typically recorded over a 

minimum 2-minute period [9] and reflects baroreceptor 

activity during resting conditions [10]. LF power is derived 

from the low-frequency band (0.04-0.15 Hz) and is governed 

primarily by the sympathetic nervous system (SNS) [8]. High 

frequency (HF) power is derived from the high-frequency 

band (0.15-0.4 Hz) and is primarily regulated by the PNS [8]. 

The LF to HF ratio (LF/HF) is the ratio between low and 

high frequency power on the HRV spectrum and is an 

estimate of the activity ratio of the SNS and PNS under 

controlled conditions [8]. Though somewhat controversial, 

the variance associated with measurement conditions such as 

duration of data sample collection, SNS/PNS interactions, 

and SNS/PNS activation under various test conditions; 

LF/HF Ratio is believed to represent the sympatho-vagal 

balance with the SNS impacting the LF power and PNS 

influencing HF power [11, 9, 8]. In this model, low LF/HF 

ratio reflects parasympathetic dominance, while a high 

LF/HF ratio is indicative of sympathetic dominance—as seen 

in fight or flight behaviors or PNS withdrawal [8]. 

In addition to the variables listed above, there are specific 

collected measures that are unique to commercial wearables. 

The Garmin Fenix 5 watch (Garmin Ltd, Olathe, KS) captures 

a large amount of information, including location from the 

global positioning system (GPS), movement from an 

accelerometer, and heart rate (labeled as pulse rate). The 

Garmin watch is intended to provide the user with information 

to help guide their daily training and provides an array of 

variables and relevant features to do so, including recovery 

time, training load, HRV stress, all-day stress, and many more 

[12]. The Garmin Fenix 5 is a watch-based wrist-worn 

wearable that was accompanied with a chest strap to collect 

biostatistical information across a 24-hour period, using 

electrodes and infrared LEDs to record the most variables of 

the three products compared in this study [13]. The variables 

from Garmin highlighted in this paper include HRV stress and 

all-day stress. All-day stress is a proprietary algorithm that 

incorporates an individual’s sleep, daily stress, and physical 

stress [14]. The wrist-worn Whoop Strap tracks an individual’s 

sleep, recovery, and strain based on variables such as: resting 

heart rate (RHR), respiratory rate, HRV, and sleep (Whoop Inc, 

Boston, MA). The proprietary variable from Whoop used in 

this study is recovery score. Whoop claims to be the gold 

standard in sleep tracking for wearable devices, as it captures 

individual biostatistics throughout the day, and measures sleep, 

recovery, and strain overnight [15]. The algorithm for recovery 

score utilizes HRV and is suggested to help an individual make 

appropriate training decisions based on their recovery score. 

The third device used in this study was the Omegawave 

(Omegawave Ltd, Espoo, Finland), which utilizes a chest strap 

and electrodes and claims to assess both the brain and heart 

over a 4-minute timespan while the individual is supine and at 

rest [16]. The Omegawave system analyzes the biological data 
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from the central nervous system (CNS) and HRV to provide a 

“readiness status” that can help the individual determine how 

to optimally train for that day [16]. Omegawave includes three 

omega sensors and three ECG sensors. The omega sensors 

were designed to measure DC potential—a physiological 

response related to ultraslow (<0.5 Hz) brain wave activity — 

while the ECG sensors measure the cardiac and metabolic 

systems. DC-potential reportedly captures the resting cortical 

activity of the brain and helps detect CNS fatigue. Like the 

technologies used in other wearable devices, Omegawave 

takes the data collected and calculates proprietary variables, 

such as aerobic index, fatigue, and readiness. In contrast to the 

Garmin and the Whoop systems, Omegawave is collected once 

daily, over a pre-exercise 4-minute duration [16]. 

For this study, the subjects wore the Whoop Strap (Whoop, 

Boston, MA), the Garmin Fenix 5 Smartwatch and 

accompanying chest strap (Garmin, Olathe, KS), and the 

Omegawave chest strap and sensor (Omegawave, Espoo, 

Finland) daily over the course of a 12-week exercise training 

regimen. The purpose of the current study was to investigate 

HRV metrics via three separate devices at varying times and 

their subsequent relationship – or lack thereof – by analyzing 

the inter-reliability, as well as evaluate HRV over time. Our 

primary hypotheses are as follows: 1) We expect to find the 

highest correlations between readings from the same device 

to be the Omegawave metrics taken pre-workout; 2) 

Similarly, we anticipate the highest correlations from 

different devices to be between Omegawave and Garmin 

HRV stress taken pre-workout since these variables were 

captured at similar times each day (immediately preceding 

the workout); 3) Furthermore, we hypothesize the Garmin 

pre-workout HRV and the all-day stress variable to yield a 

moderate correlation between readings of the same device, 

taken at various time points throughout the day/night; 4) 

Lastly, taking readings at different times is expected to yield 

a lower correlation between HRV metrics across the three 

wearable devices. This fourth expectation is due to the data 

being collected at varying times throughout the day/night, 

and the differences in data collected from each device, since 

each device relies on its own proprietary algorithms. 

As previously mentioned, the various devices that collect 

and analyze HRV, HR, and the derivatives each use different 

calculations in their respective algorithms. Due to the 

“black-box” nature of each wearable’s propriety algorithms 

and the lack of current literature in this area, research is 

necessary to compare these devices, and their reliability in 

predicting readiness and identifying fatigue. Such information 

can arm the coach/practitioner to refine training parameters 

based on enhanced understanding of collected HRV metrics. 

2. Methods 

2.1. Subjects 

Subjects included a convenience sample of healthy, 

active-duty military adults, who were recruited for 

participation in STRONG lab exercise sessions. The 

STRONG lab is an exercise laboratory in the Air Force 

Research Laboratories (Wright-Patterson Air Force Base, 

Ohio) designed to optimize and research human performance. 

Inclusion criteria for this study required subjects to be 

active-duty service members between the ages of 18 and 45. 

Subjects who were unable/unwilling to commit to 

participating in this study for 14 consecutive weeks (12 

training weeks and 1 week each for baseline and post-training 

testing) were excluded from the study. In addition, those who 

were currently on a medical or pregnancy profile, currently 

breastfeeding, taking prescribed blood pressure medication, or 

undergoing hormone therapy were also excluded. Also, 

candidates who were unwilling to discontinue herbal dietary 

supplements, performance supplements, or other substances 

which contain ingredients that could affect cardiovascular 

response with exercise were excluded. Finally, those with a 

history of abdominal hernia surgery, and those suffering from 

a musculoskeletal injury, or cardiovascular/respiratory disease 

were excluded. Twenty-five subjects (18 males) with ages 

ranging from 23 to 41 years (32.62 ± 4.56 years) finished the 

study with complete data across all devices. To have 

successfully completed the study, each subject was required to 

complete at least 80% of the prescribed exercise sessions. 

Table 1. Demographics. 

Gender 18 males; 7 females 

Age (years) 32.62 ± 4.56 

Height (in) 68.59 ± 2.89 

Weight (lb) 180.96 ± 31.89 

Body Fat (%) 29.16 ± 7.45 

Resting HR (bpm) 70.20 ± 15.57 

VO2max (mL/kg/min) 47.68 ± 11.46 

2.2. Design 

The experimental design on this study was an observational 

research study using repeated measures with the following 

factors: gender, training week, and day of week. 

2.3. Methodology 

The subjects participated in a 12-week exercise training 

program, with exercises scheduled five days a week (excluding 

holidays). The five-day training program was comprised of 45–

60-minute training sessions with 3 days of strength training and 

two days of cardiovascular training. Due to incomplete data, 

cardiovascular training days were excluded from the analysis. 

The circuit included various strengthening exercises with 

minimal rest period to simultaneously target the subject’s 

cardiovascular fitness/stamina and strength. Each strength 

training day was designed to target all major muscle groups 

with core work performed on cardiovascular training days. The 

goal of the training program was to improve general strength 

and fitness. HRV data were collected using a Whoop Strap 

(Whoop, Boston, MA), the Garmin Fenix 5 Smartwatch and 

strap (Garmin, Olathe, KS), and the Omegawave chest strap and 

sensor (Omegawave, Espoo, Finland). During the study, the 

subjects were instructed to wear the Fenix 5 (chest strap was 

worn during exercise only) and the Whoop all day for the 
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entirety of the study. The Omegawave was only worn just prior 

to exercise sessions to collect biometrics and then was removed 

(in accordance with manufacturer recommendations). 

2.4. Statistical Analysis 

The Omegawave analysis consisted of industry standard 

metrics which analyze NN intervals. These metrics include: 

SDNN, RMSSD, and the LF/HF ratio. The metrics obtained 

daily from the Whoop Strap were “Recovery Score” and 

RMSSD. Both Whoop metrics were captured during sleep 

the night before each exercise session. From the Fenix 5 we 

obtained the “HRV Stress” metric just before each exercise 

session and “All-Day Stress” metric, which was derived from 

24-hour wear/use of the device. Data from the following 

variables were log-normal and log-transformed prior to 

analysis: Whoop RMSSD, Omegawave SDNN, Omegawave 

RMSSD, and Omegawave LF/HF. 

Due to the absence of RPE reporting during cardiovascular 

training days these days were excluded from analysis. The first 

three weeks of HRV data were excluded from analysis since 

some individuals did not begin consistently wearing their device 

until week two and prior results indicated that the correlational 

structure among some survey responses did not stabilize until 

this time [17]. Between-subjects analyses were calculated based 

on aggregated data and within-subject analysis of variations 

using the repeated measures correlation function available in R 

[18]. Statistical significance was set to p-value ≤ 0.05. To 

calculate average correlations, the Fisher z-transformation was 

performed, descriptive and inferential statistics were calculated, 

and the resultant z-score was transformed back into a correlation. 

Intra-class correlation coefficients (ICC) were calculated to 

estimate the variance in each variable attributable to 

subject-specific variation. Finally, linear mixed models were 

used to evaluate trends in HRV. All statistical procedures were 

conducted using R, version 3.6.2 (R Core Team, Vienna, 

Austria), except mean and standard deviations which were 

calculated in Excel (Microsoft Inc., Redmond, WA, USA). 

3. Results 

Within-subject correlations (0.24 ± 0.27) were generally 

lower than between-subjects correlations (0.54 ± 0.43), t (35) 

= -4.02, p < 0.001. In other words, covariations of HRV 

metrics around participants’ mean values were less strongly 

correlated than overall average HRV values from participants 

around grand means. There was a moderate positive 

relationship among between- and within-subjects correlations 

(r = 0.65). For between-subjects correlations, significant 

relationships were found in 18 out of 28 possible pairs of HRV 

variables. To identify patterns of connectivity, community 

detection was conducted on the threshold between-subjects 

correlation matrix using the Louvain method [19]. Three 

communities were identified. The first community consisted 

of Garmin HRV Stress, Whoop RMSSD, Omegawave SDNN, 

and Omegawave RMSSD. While the ICC for these variables 

were not entered into the clustering algorithm, they do appear 

to be related to the magnitude. The first communities’ ICC 

was between 0.65 and 0.75 (see Table 2 and Figure 1 left 

panel). The second community consisted of Garmin all day 

stress, Garmin prior all-day stress, and Omegawave LF/HF. 

The ICC for these metrics ranged from 0.30 to 0.37 (see Table 

2 and Figure 1 left panel). The final community was Whoop 

Recovery Score, which did not correlate significantly with any 

of the other variables and yielded a very low ICC of 0.07 (see 

Table 2 and Figure 1 left panel). The lines in the left panel of 

Figure 1 indicate positive (green) or negative (red) 

correlations and the thickness is proportional to the magnitude 

of correlation, while the middle panel displays the proportion 

of variance that is accounted for in each variable by subject 

specific variability, and the right panel displays the within 

subjects correlation around their own means. These values 

indicate that clusters in the between-subjects HRV metrics 

were partitioned in accordance with the amount of 

subject-specific variability, with three classes (moderate to 

high, low to moderate, and very low ICC values). 

 

Figure 1. Between Subject Correlations (left), ICC proportions of Variance (center), and Within Subject Correlations (right). 
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Table 2. HRV Metrics in the Between Subjects Correlation Matrix. 

Variable ICC 

Garmin HRV Stress, Whoop RMSSD, Omegawave SDNN, Omegawave RMSSD 0.65-0.75 

Garmin All-Day Stress, Garmin Prior All-Day Stress, Omegawave LF/HF 0.30-0.37 

Whoop Recovery Score 0.07 

*Note: The clustering structure appears to be related to the magnitude of the ICC for the variables, but ICC was not entered into the clustering algorithm. 

For repeated-measures correlations, significant 

relationships were found between Omegawave SDNN, 

Omegawave RMSSD, and Garmin HRV Stress. Whoop 

recovery score and Whoop RMSSD were also significantly 

related. 

To test the effects of day of the week on HRV, we fit linear 

mixed models to HRV metrics from variables from each of the 

identified communities: Omegawave RMSSD (moderate to 

high ICC), Omegawave LF/HF (low to moderate ICC), and 

Whoop recovery score (very low ICC). The factors and 

covariates included in models predicting were week (to 

capture longer trends in HRV over the course of the study), 

week
2
 (to capture quadratic trends), day of the week (to 

capture weekly cycles), gender, age, and all possible 

interactions of these variables. These variables were also 

included as random effects. The best-fitting, parsimonious 

model was selected using likelihood ratio tests of nested 

models. 

There was a main effect of gender on Omegawave RMSSD. 

Males, on average, demonstrated a higher RMSSD, (p = 0.016) 

(see Table 3). There was a negative effect of day of the week: 

RMSSD consistently started out high on Mondays and ended 

lower on Fridays, (p = 0.032) (see Table 3). This trend can be 

seen in Figure 2, below. 

 

Figure 2. HRV Metric Comparison 1-Week Trend. 

There was also a significant quadratic trend over the course 

of the training protocol; RMSSD decreased slightly during the 

first half of the study but increased slightly during the second 

half (p = 0.001) (see Table 3). For Omegawave LF/HF, there 

was a significant effect of day of week. This measure 

consistently started lower on Mondays and ended higher on 

Fridays (p = 0.002; see Table 4). Table 4 also displays there 

was a significant week by day of week interaction (p = 0.001), 

indicating that the weekly recovery trend increased over time 

for Omegawave LF/HF. Day of the week was the only 

significant predictor of Whoop recovery score, which started 

high Mondays and ended lower on Fridays (p < 0.001) (see 

Table 5). 

Table 3. Omegawave RMSSD. 

Predictors Estimates CI p 

(Intercept) 3.3 2.94 – 3.65 <0.001 

Training Week 0.39 -0.23 – 1.01 0.222 

Training Week2 1.01 0.39 – 1.63 0.001 

Day of Week -0.02 -0.04 – -0.00 0.032 

GenderMale [1] 0.52 0.10 – 0.94 0.016 

Random Effects 

σ2 0.1 

τ00 Subject 0.22 

ICC 0.7 

N Subject 25 

Observations 468 

Marginal R2 / Conditional R2 0.160 / 0.747 

Table 4. Omegawave LF/HF. 

Predictors Estimates CI p 

(Intercept) 0.3 0.05 – 0.54 0.017 

Day of Week 0.07 0.03 – 0.11 0.002 

Training Week -0.04 -0.09 – 0.01 0.113 

Day of Week × Training Week 0.02 0.01 – 0.04 0.01 

Random Effects 

σ2 0.48 

τ00 Subject 0.31 

τ11 Subject. Training Week 0 

ρ01 Subject 0.48 

ICC 0.4 

N Subject 25 

Observations 468 

Marginal R2 / Conditional R2 0.021 / 0.417 

Table 5. Whoop Recovery Week. 

Predictors Estimates CI p 

(Intercept) 60.07 56.25 – 63.88 <0.001 

Day of Week -2.46 -3.78 – -1.14 <0.001 

Random Effects 

σ2 439.36 

τ00 Subject 27.37 

ICC 0.06 

N Subject 25 

Observations 468 

Marginal R2 / Conditional R2 0.026 / 0.083 

4. Discussion 

The primary aim of this study was to determine the 

inter-reliability of HRV metrics captured during various 

time-points from Omegawave, Whoop, and Garmin. The 

results show that reliability of Omegawave RMSSD was 
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moderately acceptable, while reliability of Whoop Recovery 

Score was low due to a low ICC and a lack of correlation with 

other variables between subjects. We believe this low ICC 

from Whoop indicates that its value has been normalized 

around individual means. Concerns regarding proprietary 

metrics include lacking information pertinent to how specific 

metrics were calculated, and lacking means to regenerate or 

evaluate such calculations for accuracy due to uncertainty, 

thus leading to speculation regarding score derivation. This 

uncertainty can make it difficult to ascertain the meaning of 

one individual’s response relative to other individuals. 

This study identified that overall correlations from various 

wearable devices around a grand mean (0.54 ± 0.43) were 

larger than the correlations around an individual’s mean 

assessed at varying timepoints (0.24 ± 0.27). This supports our 

expectation and prior evidence that timing is important in 

terms of HRV collection, as substantial individual variation is 

evident and typical throughout the day. Thus, where possible, 

we recommend that the coach/practitioner be consistent in 

timing of capturing such measures, as this will likely increase 

confidence in the value of these metrics. In contrast, capturing 

these metrics at differing times throughout the day should 

lower the user’s confidence in the reliability of the metric for 

guiding exercise programs or determining readiness of an 

individual. Moderate correlation noted among various devices, 

indicates that despite propriety algorithms making it difficult 

to determine precisely what variables go into each calculation, 

there are relationships existing among the device, thus 

increasing face validity of the metrics. With only moderate 

correlations, caution should be implemented when attempting 

to interpret these findings to guide training. The 

coach/practitioner should be cognizant of the fact that this 

study demonstrated that devices worn over a 24-hour period 

appeared to be significantly more beneficial for tracking 

trends in HRV and associated metrics vs those that are only 

worn for a few minutes a day just prior to exercise. 

In our prior work, we analyzed the relationship between 

HRV metrics from these devices and found that Omega Wave 

LF/HF was the best overall predictor for physical performance 

on a given day and that Garmin All Day stress was better than 

chance [23]. This current study indicates that measures from 

the Whoop (recovery score and RMSSD) were not 

significantly related to physical performance. In other words, 

this wearable did not independently identify an individual’s 

capacity to perform on any given day. Therefore, we suggest 

that the practitioner should take caution when using this 

wearable to make decisions about exercise. This device should 

not be considered as a reliable, independent predictor to 

govern exercise when used in isolation; and instead, should be 

considered in context when combined with other wearables’ 

data or additional information from the individual. 

Findings in the current study also indicate that Omega 

Wave LF/HF is the most sensitive variable to training effects 

and weekly stress patterns, in that it showed improvements in 

HRV over the course of the entire training program, changes 

within week values, and an interaction in which the change in 

weekly recovery increased over time. However, these broader 

conclusions about the sensitivity of these metrics are limited 

by the fact that these findings come from the same data sample. 

Further investigation with these devices in a larger sample 

appears warranted to further refine our findings. 

Our results indicate that both gender and day of the week 

impacted Omegawave RMSSD. While all subjects started out 

with higher HRV values on Monday and decreased over the 

week, men typically demonstrated higher HRV values than 

women (Figure 3). This finding was expected, as previous 

research reported similar findings, suggesting that male HRV 

values are commonly higher than female [20] when 

comparing individuals of similar fitness level. In separate 

studies conducted by Unetani et al. (1998), and Saleem, et al. 

(2012) results indicated that females consistently exhibited 

lower HRV values compared to males [21]. 

 

Figure 3. Aggregate physical performance from projections through 

performance variables as a function of gender. 

While not novel to this study, we understand that training is 

one of the primary factors that impacts HRV; specifically, 

volume, intensity, new stimuli, and work-to-rest ratio [22]. 

The authors of this report suggest that proper sleep, hydration, 

and a training plan that allows for adequate recovery are 

required to progressively and consistently increase HRV [22]. 

In recent years, the military has more frequently integrated 

holistic approaches to recognize and consider a combination 

of factors such as sleep, hydration, nutrition, and recovery as 

being critical components of multimodal training strategies. 

Newly implemented initiatives such as holistic health and 

fitness (H2F), Preservation of the Force and Family (POTFF), 

and integrated operational support teams (iOST) consisting of 

multi-disciplinary teams embedded within specific 

operational teams to offer a multi-faceted approach to optimal 

health and wellness. We believe that such approaches are 

likely to benefit the warfighter while reducing the paradoxical 

unintended side effect of injury which might occur during 

training efforts intended to improve fitness. Based on HRV 

trends identified and outlined in this study, we suggest that 

such efforts are beneficial and should continue in order to 

optimize training and performance while mitigating inherent 
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risks associated with training and high-effort performance 

efforts to improve fitness. 

One of the most interesting findings in this cohort was that 

our subjects showed evidence of fatigue during the course of 

the week. This trend was captured by multiple devices and 

metrics included in this study. In addition to a decrease in 

HRV, there was also a decrease in Whoop Recovery Score, 

and Garmin All Day Stress score throughout the week, with 

scores rebounding to begin the subsequent week. This finding 

is somewhat intuitive, since many individuals subjectively 

report fatigue throughout the course of the week, as Friday 

approaches, with renewed vigor and energy at the onset of a 

subsequent week, but we do think that this finding captured 

from multiple devices is important. Since exercise specialists 

typically monitor and regulate training and recovery balance 

in an effort to optimize fitness and performance, the impact 

of “Friday fatigue” along with apparent recovery by Monday 

of each week is critical and should be considered when 

designing exercise parameters for this population. Fatigue was 

apparent, due to the nature of a five-day, Monday through 

Friday progressive strength training program among 

active-duty military participants who were concurrently 

required to perform the various responsibilities and tasks of 

their operational requirements over the course of the week. 

This finding is somewhat expected, but with multiple devices 

capturing this trend, we believe this finding warrants further 

investigation and likely extends beyond a military population. 

Further investigation can help determine optimal dosage of 

exercise to yield intended benefits while minimizing 

excessive fatigue with its inherent injury risk and potential 

impact on performance and health in multiple domains. 

A persistent trend identified by the Garmin All Day Stress 

metric was apparent in this military cohort throughout the 

course of training (Figure 2). A steady decline emerged 

throughout the course of the week, but then on Friday it began 

to rebound slightly. To properly interpret this finding, it is 

important to note that our population faces many different 

stressors throughout the week aside from training. Therefore, 

the decrease throughout the week may be influenced by 

mental fatigue, physical fatigue, work related stress, or 

personal reasons. In turn, the increase observed going into the 

weekend could be due to multiple factors, including an 

enhanced mental state or elevated mood as service members 

approached the end of the work week or perceived an 

upcoming break from training intensity. This study has found 

that practitioners can detect macro-level (group) trends in 

HRV that correspond with the work week. While this may not 

be beneficial for detecting changes in any one individual on 

any given day for purposes of intervention, it can be useful for 

macro-level training/planning. We suggest that the utilization 

of daily wellness surveys in addition to a wearable device 

could potentially help explain factors related to a subject’s 

fatigue (individually and group-trends), and recovery over 

time, and warrants further investigation. 

There were some limitations identified in this study. One 

limitation was the small sample size and high dropout rate in 

the sample. This emphasizes the challenges of recruiting 

participants in military populations for long-term training 

studies and should be considered in future studies. In addition, 

we required subjects to complete at least 80% of intended 

workouts in order to be retained for analysis. Compliance at 

this level is relatively rare for exercise studies of this duration, 

particularly among military personnel (citations). The data 

that we collected ascertains that this subgroup of individuals 

was highly compliant with device wear included in this study, 

as well as exercise attendance, thus increasing our confidence 

in the results. Further studies with larger sample size, while 

maintaining high exercise compliance are critical to further 

understand the relationships identified in this study. 

Our analyses showed that Omegawave RMSSD yielded 

acceptable reliability compared to Whoop and Garmin. 

Whoop Recovery Score had low reliability represented by a 

low ICC for Day of Week Whoop Recovery Score and lacked 

correlation with additional variables between subjects. Our 

analyses also showed a trend in Garmin All Day Stress, 

decreasing as the week progresses, then an up-trend at the end 

of the week. 

5. Conclusion 

In the studied sample there appears to be significant 

variability between three separate devices evaluated in terms 

of accurate prediction of readiness and fatigue. Algorithmic, 

proprietary data, unspecified for the consumer, further 

complicates the variability of these devices. Coaches and 

practitioners should consider this when relying on a single 

device for determining parameters for upcoming workouts. 

Further research might help determine which combination of 

wearables and/or which combination of subjective 

information reported from the individual should be combined 

with wearable device output in order to optimize a training 

regimen for the individual. Regardless of device used, a trend 

of increasing fatigue over the course of the week emerged. 

This information should be considered when designing an 

exercise program as being cognizant of this information is 

likely to help mitigate injury risk, avoid chronic burnout, and 

optimize performance. In conclusion, the Omegawave 

provides adequate reliability for HRV metrics and 

performance testing. In order to better track overall readiness 

for our active-duty military personnel, it is suggested that a 

daily wellness survey be used in addition to a HRV device due 

to the outside stressors our military population faces, such as 

physical fatigue, personal stressors, mental fatigue, and 

work-related stressors. The added information would likely 

help determine the reason for the various trends and 

relationships identified in this study. 

6. Recommendations for Future Work 

It is recommended that more research be performed on this 

topic. Specifically, further investigation into the effects of 

exercise dosage, timing, and fatigue should be explored due 

to the significant impact on training and performance. There 

is a necessity to conduct this research with a larger cohort 
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and updated versions of these (and perhaps other) wearable 

devices to increase confidence in the results obtained in this 

study. Finally, a self-reported “daily wellness” survey paired 

with the collected HRV metrics might provide additional 

insight into the potential impact of factors linked to daily 

activities and general wellness trends on HRV readings. 
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