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Abstract: Flash butt welding, a mainstream welding method employed in producing anchor chains, is a critical 

manufacturing process affecting the quality of anchor chains. Ultrasonic and load testing are used to evaluate the welding 

quality of anchor chains, but the cost of checking and replacing unqualified chain links is high. A deep learning-based quality 

evaluation method for flash butt welding is proposed to reduce the cost of detecting and replacing substandard chain links. 

First, displacement and current sensors collect electrode position and current signals during welding. Second, since the number 

of qualified anchor links is much larger than that of unqualified ones, a new data synthesis method is proposed: nearest-

neighbor splicing sampling, which achieves the enhancement of minority samples by segmenting and combining existing data 

samples according to the features of anchor chain welding. Then, a piecewise linear interpolation method is used to handle the 

varying data length problem, thus satisfying the input requirements of the convolutional neural network (CNN). Finally, a 

CNN model is established, and dropout is used to reduce the over-fitting phenomenon. The experimental results show that the 

accuracy of the under-sampling method, over-sampling method, and nearest-neighbor splicing sampling method are 93.8%, 

95.9%, and 96.3%, respectively, and the sensitivity, specificity, and accuracy of the CNN model are 95.7%, 93%, and 94.3%, 

respectively, which are better than those of the support vector machine (SVM). 
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1. Introduction 

As necessary equipment for ensuring the safety of ships and 

offshore structures' safety, the industry has widely valued anchor 

chain quality. Since flash butt welding is a critical process in 

manufacturing anchor chains, the welding quality determines 

whether the mechanical properties of the finished anchor chain 

are qualified [1]. Due to the complex physical and chemical 

reactions in the flash butt welding process, it is difficult to 

establish an accurate welding quality evaluation model for 

evaluating whether the welding process is working correctly [2]. 

Recently, rapid development has been made in deep 

learning technology, represented by a deep neural network, 

widely used in image classification, speech recognition, and 

anomaly detection [3-7]. Some researchers have tried to use 

the deep learning algorithm to evaluate the welding quality 

by classifying the welded images to obtain preliminary 

research results. For example, Park et al. proposed a method 

based on a convolutional neural network (CNN) to inspect 

welding defects on the surface of an engine transmission with 

an accuracy of 99.3% [8]. Du et al. used CNN to identify the 

types of weld seams in gas-metal arc welding [9]. They 

achieved 98.0% classification accuracy through the purpose-

built visual sensing system and fast segmentation of images. 

Unlike standard arc welding, the welding joints of the anchor 

chain after flash butt welding is closed in the chain links, and 

valuable welding images can not be obtained. Therefore, this 

study evaluates the welding quality according to the change in 

sensing data in the flash butt welding process. The deep learning 

algorithm shows advantages for the classification of time series 

(e.g. sensing data of the welding process) [10]. For instance, 

Ronao et al. proposed a human activity recognition method 

based on a deep neural network with an accuracy of 95.8% [11]. 
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Zhao et al. recognized speech emotion based on a merged deep 

CNN with 92.7% accuracy [12]. Acharya et al. used CNN to 

automatically diagnose coronary artery diseases based on ECG 

signals, with 95.1% accuracy [13]. 

However, unlike the existing time series, the flash butt 

welding process's sensing data has multidimensionality 

characteristics, varying data length, and imbalanced datasets, 

making data pre-processing complicated. According to the 

features of flash butt welding of an anchor chain, this paper 

proposes a new method of welding quality evaluation based on 

the characteristic change of sensing data in the welding process 

and deep learning. A nearest-neighbor splicing sampling 

method for generating new samples is designed to handle the 

extreme imbalance of welding data issues. A sample is 

constantly selected from the unqualified samples, and the two 

samples closest to the selected sample are found to be spliced 

into a new sample. After piecewise linear interpolation and 

normalization of the samples, the CNN model is established 

and compared with the SVM. The experimental results show 

that the proposed welding quality evaluation method achieves 

94.3% accuracy, which implies better recognition ability. 

2. Research Method and Experimental 

Design 

2.1. Flash Butt Welding of Anchor Chain 

 

Figure 1. Electrode position and current signal. 

Flash butt welding uses resistance heat supplied by a 

welding transformer to heat the two conjugate faces of an 

anchor chain to a suitable temperature and form a weld pool. 

Under upset force, the two conjugate faces are rapidly 

squeezed together, and fractions of the weld pool extrude. 

Figure 1 is an example of sampling the electrode position and 

current signals during an anchor chain welding process. 

Figure 2 shows the process diagram of flash butt welding 

of anchor chain, including three main stages: preheating, 

continuous flash, and upset [1]. 

 

Figure 2. Process diagram of flash butt welding of anchor chain. 

The preheating stage consists of the forward stage S1, 

heating stage S2, backward stage S3, and balancing stage S4. 

Stage S1 makes the two conjugate faces contact, stage S2 heats 

the conjugate faces, stage S3 separates the conjugate faces, and 

stage S4 causes the heat on the conjugate faces to diffuse into 

the metal. These four stages are repeated several times until the 

two conjugate faces reach a suitable temperature distribution. 

In the continuous flash stage S5, the movable platen of the 

welding machine keeps moving forward with a suitable speed 

that matches the molten metal expelled speed, then 

generating a continuous flash between the two conjugate 

faces of an anchor chain link. 

The upset stage includes the electric upset stage S6, the 

nonelectric upset stage S7, and the reset stage S8. At the 

beginning of the upset, a large upset force is applied to the 

anchor chain link to make the two conjugate faces close 

quickly and produce a certain plastic deformation to ensure 

the recrystallization of the weld joints. The electrode is 

charged while entering the upset stage to prevent high-

temperature oxidation of the weld joints. Thus, the upset 

stage can be divided into electric and nonelectric. Finally, the 

electrode is reset to the initial position. 

2.2. CNN 

Convolutional neuro network (CNN), a famous deep 

learning algorithm, is used in many fields. The input of the 

neuro network is usually a two-dimensional matrix such as 

an image, but the electrode position and current in this paper 

are typical one-dimensional signals. Therefore, a one-

dimensional CNN is established to evaluate the quality of 

anchor chain flash welding [14, 15]. 

 

Figure 3. CNN architecture. 
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The CNN used in this paper comprises one input layer, 

two convolutional layers, two pooling layers, one full 

connection layer, and one output layer, as shown in Figure 3. 

The learning rate of the CNN is set to 0.001, and the number 

of iterations is set to 1200. After pre-processing the electrode 

position and current signals, an input layer of size 1 × 800 × 

2 is used. The first convolutional layer comprises 8 

convolutional cores with 1 × 3 size and 1 step size. The first 

pooling layer comprises 8 filters with 1 × 2 size and 1 step 

size. The second convolutional layer comprises 16 

convolutional cores with 1 × 3 size and 1 step size. The 

second pooling layer comprises 16 filters with 1 × 2 size and 

1 step size. The full connection layer comprises 3200 

eigenvalues. Finally, the output layer divides the flash 

welding quality of the anchor chain into two categories: 

qualified and unqualified. 

The convolutional kernel of the convolutional layer can be 

regarded as a sliding window in the time series, and the 

short-term features are extracted. The calculation formula for 

the convolutional layer is 

1
( )

j

l l l l
j i ij j

i M

x f x k b
−

∈

= ∗ +∑                      (1) 

where l
jx  is the thj  eigenvector of the l  layer, 1l

ix −  is the 

thi  eigenvector of the 1l −  layer, jM  is the set of 

eigenvectors of the 1l −  layer, ( )f �  is the activation function, 

"*" is the convolutional symbol, l
ijk  is the thi  weighting 

coefficient of the layer l  convolutional kernel j , and l
jb  is 

the offset coefficient corresponding to the thj  convolution 

kernel of the l  layer. l
ijk  and l

jb  are initialized to random 

values and adjusted to the best through network training. 

The pooling layer performs the maximum pooling 

operation on the features acquired by the convolutional layer 

and retains useful information while reducing the amount of 

data. The calculation formula for the pooling layer is 

1( ( ) )l l l l
j j j jy f down y cβ −= +                   (2) 

where l
jy  is the thj  eigenvector of the l  layer, 1l

iy − is the 

thi  eigenvector of the 1l −  layer, ( )down �  is a down-

sampling function, l
jβ  is the thj  down-sampling coefficient 

of the l  layer, and l
jc  is the thj  bias coefficient of the l  

layer. l
jβ  and l

jc  are initialized to random values and 

adjusted to the best through network training. 

The calculation formula for the full connection layer is 

1( )l l l lz f W z d−= +                          (3) 

where lz  is the eigenvector of the l  layer, 1lz −  is its 

eigenvector, lW  is its weight matrix, and ld  is its bias 

coefficient. 

Dropout is used in the full connection layer to reduce the 

possibility of over-fitting. In the network training process, 

some nodes are randomly disabled, with their output values 

set to 0. The values of these nodes are recovered in the next 

network training process, and some nodes are randomly 

selected to repeat the process. 

Dropout can avoid the over-fitting of some local features 

by the network and provide better generalization ability to 

CNN [16]. In the full connection layer, 1lz −  is obtained by 

the following two formulas: 

1 ~ ( )lr Bernoulli p−                             (4) 

1 1 1l l lz r z− − −= ×                                 (5) 

Bernoulli randomly generates a vector 1lr −  consisting of 0 

and 1 with probability 0.5P = . The output value of 1 is 

reserved for the corresponding node, and that of the 

corresponding node of 0 is 0. Thus, a new 1lz −  is obtained as 

the input of the full connection layer. 

3. Data Pre-Processing and Experiments 

3.1. Normalization 

In deep learning, different evaluation indicators often have 

diverse dimensions and dimension units, affecting the results 

of data analysis. The data needs to be standardized to 

eliminate the dimensional influence on the indicators. This 

paper uses the min-max standardization method to normalize 

the electrode position and current signal. The formula is as 

follows: 

x - min
x =

max - min
′                                   (6) 

where max and min are the maximum and minimum values 

of the sample data. All data x are converted to x′  between [0, 

1]. The purpose is to eliminate the difference in the 

magnitude between the electrode position and the current 

signals, then avoid the error of network prediction caused by 

the large difference in the magnitude of input data. 

3.2. Nearest-Neighbor Splicing Sampling 

Because the number of qualified anchor chains is much 

larger than unqualified ones, the highly imbalanced data is a 

tricky issue in flash welding quality evaluation. Generally, 

there are three methods for addressing this issue: over-

sampling for the minority class, under-sampling for the 

majority class, and synthesizing new data [17, 18]. 

The under-sampling method improves the classification 

accuracy of the minority class by reducing the number of 

majority samples. However, randomly discarded samples 

may abandon potentially useful information from the 

majority class, then reduce classification performance. The 

number of samples randomly increased by over-sampling the 

minority class. This method provides enough samples, but it 
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easily leads to over-fitting. This study analyzes the 

characteristics of anchor chain flash welding and proposes a 

new data synthesis method: the nearest-neighbor splicing 

sampling. The sampling flow is shown in Figure 4. 

 

Figure 4. Nearest-neighbour splicing sampling process. 

First, for each sample in the minority class, the dynamic 

time warping (DTW) distance is used to calculate its distance 

to other samples in the class [19, 20]. Assuming that A  and 

B  are two samples. Each sample contains electrode position 

and current signals, and the traditional DTW distance only 

applies to two one-dimensional time series. Thus, this paper 

makes some improvements to the multidimensional time 

series. The sample A  can be expressed as 

 1 2{ , , , }electrode positio mnA a a a= ⋅⋅⋅  and 
1 2{ , , , }current mA a a a′ ′ ′= ⋅ ⋅ ⋅ , 

and those of the sample B  can be expressed as 

 1 2{ , , , }electrode positio nnB b b b= ⋅⋅ ⋅  and 
1 2{ , , , }current nB b b b′ ′ ′= ⋅ ⋅ ⋅ . 

Construct the distance matrix D  of m × n, and each element 

|| ||+|| ||ij i j i jd a b a b′ ′= − − . A group of adjacent matrix 

elements is composed into a curved path, denoted as 

1 2{ , , , }kW w w w= ⋅ ⋅ ⋅ , whose thk  element is ( )k ij kw d= . 

This path satisfies the following conditions: 

(1) { , } 1max m n k m n< ≤ + − ; 

(2) 
1 11w d= ,

k mnw d= ; 

(3) For k ijw d=  and -1k i jw d ′ ′= , 0 i i′≤ −  and 

0 1j j ′≤ − ≤  must be satisfied. 

The DTW distance can be summarised as using dynamic 

programming to find an optimal path with the minimum 

bending cost; that is, 

11(1,1)

( , ) { ( , 1), ( 1, ), ( 1, 1)}ij

D d

D i j d min D i j D i j D i j

=
 = + − − − −

  (7) 

where 2,3, ,i m= ⋅⋅ ⋅ , 2,3, ,j n= ⋅ ⋅ ⋅ , and the minimum 

cumulative value of the curved path in the matrix D  is 

( , )D m n ; then, the distance between sample A  and sample 

B  is 

( , ) ( , )DTW A B D m n=                     (8) 

 

Figure 5. Nearest-neighbor splicing sampling to generate new electrode location. 

 

Figure 6. Nearest-neighbor splicing sampling to generate new current. 

A sample 
1X  is randomly selected from the minority class, and samples

2X  and 
3X , which are closest to 

1X , are also 



 International Journal of Mechanical Engineering and Applications 2023; 11(1): 1-8 5 

 

selected. According to anchor chain flash welding 

characteristics, samples 
1X , 

2X , and 
3X  are divided into 

three fragments: preheating, continuous flash, and upset. 

Three fragments, originating from different samples, are 

randomly selected and spliced into a new sample 
newX . The 

splicing process is shown in Figures 5 and 6. The 
newX  is 

added to the unqualified sample set, and the distance between 

newX  and other samples is calculated. By continuously 

generating new samples from the unqualified sample set, the 

unqualified samples are expanded to 1500 groups. 

The distance matrix is projected into the three-dimensional 

space to visualize the relationship between the samples, as 

shown in Figure 7. Figure 7 (a) shows the distance 

relationship between the original samples, and Figure 7 (b) 

shows the distance relationship after new samples are 

generated. The red circle indicates the unqualified anchor 

chain sample, the blue circle refers to the qualified anchor 

chain sample, and the green circle denotes the unqualified 

anchor chain sample generated using the nearest-neighbor 

splicing sample. 

  

Figure 7. Scatter plots before and after generating new samples. 

3.3. Piecewise Linear Interpolation 

The input layer of the CNN requires the same data length. 

However, in real production, the time of anchor chain flash 

welding is affected by many factors. This paper adopts the 

piecewise linear interpolation method to interpolate the 

electrode position and current signals to handle this issue. 

Piecewise linear interpolation is defined as follows: 

assuming that n + 1 interpolation nodes 

0 1 na x x x b= < < ⋅ ⋅ ⋅ < =  and corresponding values 

0 1, , , ny y y⋅ ⋅ ⋅  are given in the interval [a, b], n + 1 data points 

( , )i ix y  on the plane can be obtained, and adjacent data 

points can be connected to form a line. The function ( )P x , 

represented by n lines, is called the piecewise linear 

interpolation function of 
0 1, , , nx x x⋅ ⋅ ⋅  with interval [a, b] [21]. 

The piecewise linear interpolation functions can be expressed 

as combinations of base functions: 

0 0 1 1

0

( ) ( ) ( ) ( ) ( )

n

i i n n

i

P x l x y l x y l x y l x y

=

= = + + ⋅⋅⋅ +∑     (9) 

where ( )P x  represents the interpolation function, ( )il x  

represents the interpolation base function, and 
iy  represents 

the value of the given function. The base functions are 

expressed as 

(

1
0 1

0 10

1

  ,
( )

0   , n

x x
x x x

x xl x

x x x

− ∈   −= 
 ∈ 

                      (10) 
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1
1

1

1
1

1

1 1

,

( )
,

0   ,

i
i i

i i

ii
i i

i i

i i

x x
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x x

x xl x
x x x
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x x x

−
−

−

+
+

+

− +

− ∈   − −=  ∈  −


∉   

                      (11) 

)
(

0 1

1
1

1

0   ,

( )
  ,

n

n n
n n

n n

x x x

l x x x
x x x

x x

−

−
−

−

 ∈
= − ∈  −

                  (12) 

If 
1[ , ]i ix x x +∈ , the piecewise linear interpolation function 

( )P x  can be expressed as 

1
1

1 1

( ) i i
i i

i i i i

x x x x
P x y y

x x x x

+
+

+ +

− −
= +

− −
             (13) 

Figures 8 and 9 show that the data lengths of red sample A 

and green sample B are different. Through piecewise linear 

interpolation of electrode position and current signals, not 

only the characteristics of the original signal are maintained 

but also the requirement of consistent input data length of the 

CNN is satisfied. 
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Figure 8. Electrode position before and after piecewise linear interpolation. 

 

 

Figure 9. Current before and after piecewise linear interpolation. 

3.4. Experimental Data 

The experimental data used in this paper are the process 

signals collected from the flash welding process of the 

anchor chain. Sensors recorded the electrode position and 

current signals during welding, and a total of 1600 samples 

were collected, including 1500 qualified and 100 unqualified 

samples. To verify the superiority of the nearest-neighbor 

splicing sampling method proposed for solving the 

imbalanced dataset problem, the same CNN model is used to 

train and test the sample sets generated by under-sampling, 

over-sampling, and nearest-neighbor splicing sampling. 

Under-sampling makes the number of samples equal to 

that of unqualified samples by extracting 100 samples from 

1500 qualified samples. Over-sampling duplicates 100 

unqualified samples to 1500, and nearest-neighbor splicing 

sampling balances the samples by generating 1400 new 

disqualified samples. Of the samples generated by the three 

methods, 80% were selected as the training set, and 20% 

were selected as the test set. 

4. Results and Discussion 

The CNN is used to train the three data processing 

methods for imbalanced dataset problems, and the loss value 

and accuracy of the training set are shown in Figures 10 and 

11, respectively. As the number of iterations increases, the 

loss values of the three data processing methods tend to be 

stable and close to 0. The accuracy of the three methods is 

approximately 50% at the beginning. After continuous 

iterations, the accuracy finally reaches more than 90%. The 

accuracy of the under-sampling method, over-sampling 

method, and nearest-neighbor splicing sampling method are 

93.8%, 95.9%, and 96.3%, respectively. In other words, the 

accuracy of our proposed method is the highest. 

 

Figure 10. Loss of the training set. 

 

Figure 11. Accuracy of the training set. 

This paper uses sensitivity, specificity, and accuracy as 

three indicators to evaluate the classification performance of 

CNN. Using the true positive (TP), true negative (TN), false 

positive (FP), and false negative (FN), these three indicators 

can be expressed as follows: 

TP
Sensitivity

TP FN
=

+
                           (14) 

TN
Specificity

TN FP
=

+
                           (15) 

TP TN
Accuracy

TP FN TN FP

+=
+ + +

                    (16) 

 

Figure 12. Performance evaluation of the test set. 

Figure 12 shows the classification performance indicators 

of the test sets of the three data processing methods and the 
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relationship between the real and predicted labels, where the 

labels are divided into qualified and unqualified anchor 

chains. Sensitivity shows the percentage of qualified anchor 

chains correctly predicted, specificity displays the percentage 

of unqualified anchor chains correctly predicted, and 

accuracy shows the percentage of anchor chains correctly 

predicted. 

The sensitivity, specificity, and accuracy of the under-

sampling method in the test set are 80%, 85%, and 82.5%, 

respectively. The reduction of many qualified anchor chain 

samples took away useful information. The over-sampling 

method's sensitivity, specificity, and accuracy in the test set 

are 91%, 87.3%, and 89.2%, respectively. Simple replication 

of the unqualified anchor chain samples can easily lead to 

over-fitting, resulting in low test set accuracy. 

The nearest-neighbor splicing sampling method proposed 

in this paper achieves the best prediction performance in the 

test set. The test set consists of 300 qualified and 300 

unqualified anchor chains. The experimental results show 

that 287 anchor chains in the qualified anchor chain are 

predicted to be qualified, and 279 in the unqualified anchor 

chain are predicted to be unqualified. That is to say, the 

proposed method proposed in this paper effectively improves 

the accuracy of quality classification of anchor chain flash 

welding. 

Table 1. Performance comparison between CNN and SVM. 

Method Sensitivity Specificity Accuracy 

CNN 95.7% 93.0% 94.3% 

SVM 93.3% 89.7% 91.5% 

An SVM commonly used for time series classification is 

selected for comparison experiments to verify the accuracy of 

the CNN classification proposed in this paper. The 

experimental sample is the same as the CNN based on 

nearest-neighbor splicing sampling. The ratio of the training 

sample to the test sample is 4:1. Table 1 shows that the 

sensitivity, specificity, and accuracy of the SVM are 93.3%, 

89.7%, and 91.5%, respectively, which are lower than those 

of the CNN. Compared with SVM, CNN is a deeper neural 

network that contains multiple convolutional and pooling 

layers. Thus, it is more conducive to the efficient 

classification of datasets. 

5. Conclusions 

This paper proposes a deep learning-based quality 

evaluation method for flash butt welding of anchor chains. A 

one-dimensional CNN model consisting of two convolutional 

layers, two pooling layers, and one full connection layer is 

employed to automatically learn the characteristics of 

electrode position and current signals during welding. The 

piecewise linear interpolation method is proposed to satisfy 

the requirement of consistent data length in the CNN's input 

layer. A novel method for solving the imbalanced dataset 

problem is presented: nearest-neighbor splicing sampling. 

The experimental results show that the accuracy of 

nearest-neighbor splicing sampling on the test set is 94.3%, 

which is higher than that of under-sampling and over-

sampling; the sensitivity, specificity, and accuracy of the 1D 

CNN model in the test set are 95.7%, 93%, and 94.3%, 

respectively, which are better than those of the SVM. 

The proposed method can evaluate the quality of each 

anchor chain link, improving quality evaluation automation. 

The method has a good reference for similar practical 

problems, such as assessing the flash butt welding quality of 

automobile hubs and high-speed rail tracks. 
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